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Abstract-Under the assumption that the state of a shell is described by the change in the fU"St
and second fundamental fonns of its midsurface from an initially elastic isotropic state, an
approximate strain eneTBY density is derived, first using strictly two-dimensional aTBQments
and then by descent from three dimensions assuming incompressibility. To within errors in­
herent in shell theory itself. it is shown that the strain energy density is the same as that of a
plate of the same material.

I. INTRODUCTION

Shells that undergo large elastic strains are not uncommon: basketballs, bladders, red
blood cells, or rubber hoses, for example. At a given point on the undeformed reference
surface S let 'Y, p, and b denote, respectively, measures of the magnitudes of the ex­
tensional and bending strains and the undeformed curvatures, and let h be the unde­
formed thickness. In what follows we show that if'Y = 0(1), then the exact strain
energy V per unit of area of S may be approximated to within a relative error of O(hb,
h2 p2) by a function 4> quadratic in the bending strains and ofthe same form as for a
flat plate. By definition of a shell, hb is small: hp will be small except in the neigh­
borhood of a fold (or near crease) where shell theory is not expected to hold anyway.

The paper has two parts. In the first, we determine 4> using intrinsic, two-dimensional
arguments, based on work of Niordson [1] and Green & Naghdi [2]. However, these
papers, unlike the present one, ultimately assume small extensional strains.

In the second part, we derive 4> from a three-dimensional strain energy density W.
Here we follow Koiter [3], except that we do not assume that the extensional strains
are small. In place of Koiter's assumption of plane stress we assume incompressibility.
Either assumption serves to relate the transverse normal strain to the remaining strains.
(The plane stress assumption is consistent with ours if Poisson's ratio v = i.)

A descent from three dimensions for rubber-like shells was pioneered by Biricikoglu
& Kalnins [4] who took W to be of the Mooney form. However, their analysis has two
serious shortcomings. First, their constitutive law for the stress resultants contains an
unknown hydrostatic pressure. While such a term appears in the three-dimensional
stress-strain relations as a consequence of the incompressibility constraint, it should
not occur in a shell (or membrane) theory because the midsurface can change area as
it deforms. Second, the kinematic model adopted in [4] is too restrictive: it allows
incompressibility to be satisfied only at the midsurface. Failure to enforce this con­
straint throughout the shell thickness leads to incorrect coefficients for the bending
strains in 4>.

For an infinite cylindrical shell, each cross 'section orwhich undergoes identical,
planar deformation. our results. specialized to a Mooney material, agree with those
obtained by Libai and me [5].

2. INTRINSIC ANALYSIS

The classical, nonlinear theory of shells assumes that the Internal Virtual Work,
IVW, on an arbitrary, initial piece P of the reference surface S is given by [6, Eqn
(53)]

t Dedication: To Eric Reissner on the occasion of his seventieth birthday in appreciation of his inspired
teaching and his insights into shell theory.

t This work was supported by the National Science Foundation under Grant No. CEE·8117103.
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(2.1)

where P is the image of P. In the integrand, nQ~ and mQ~ are stress resultants and
couples and

(2.2)

are extensional and bending strains. aQ~ and bQ~ are the covariant components of the
metric and curvature tensors of S and the barred quantities are their counterparts for
the deformed reference surface S.

A shell is said to be (isothermally) elastic if there exists a function V of the strains­
the strain energy per unit area of S-such that

IVW = 8 LV dA = L8V dA = fop (a/'ii)1/2 8V cIA , (2.3)

where a = det (aQ~)' etc. As P is arbitrary and as we may always construct a dis­
placement field such that at any point 8'YQ~ and 8PQ~ take on arbitrary values, it follows
that

(2.4)

The equilibrium equations that na~ and mQ~ must satisfy are given by eqns (55) and
(56) of [6].

To keep the analysis manageable, we assume that V is anisotropic and inhomoge­
neous only through the curvature tensor of S. That is, we assume that at any point on
S

where

V = V(f, ii, B; h), (2.5)

(2.6)

In (2.6), 8a = op/oaQ are the covariant base vectors associated with a set of Gaussian
coordinates (aQ

) that determine the position p of a point on S and 8aa~ denotes the
direct (or dyadic) product of 8a and a~.

The value of V at a given point of S must be independent of the coordinate system;
thus V depends only on the scalar invariants of the three, symmetric, second order
tensors f, ii, B. Recalling the Cayley-Hamilton theorem for any two-dimensional,
second order tensor S,

S2 = (TrS)S + ~ (TrS2 - TrS)1, (2.7)

where Tr denotes the trace and 1 is the identity tensor, we conclude that there are, at
most, ten individual and combined invariants of f, R, and B:

Trf, Trf2, TrR, TrR2, TrB, TrB2

Trf . R, Trf . B, TrR . B

Trf· R· B.

(2.8)

(2.9)

(2.10)
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The last invariant is not independent of the first nine. By applying the Cayley-Ham­
ilton theorem to (f + 'R,>2 - (f2 + R2), pre (or post) multiplying the right-side by B,
and noting that f, li, and B are symmetric, one can show that

2Trf· R . B = TrfTrR· B + TrRTrB . f + TrBTrr . R - TrfTrRTrB. (2.1l)

In fact, there are only eight functionally independent invariants, not nine. This is ob­
vious if we note that at any point of S, we may always choose a coordinate system in
which the off-diagonal components of one of our three tensors are zero. Thus the nine
invariants can be expressed in terms of 2 + 3 + 3 components. (The dependence of
the nine invariants in (2.8) and (2.9) also emerges upon regarding two-dimensional,
second order, symmetric tensors as elements of a three-dimensional vector space with
TrS . T as the inner product.) In our analysis it does no harm to keep all nine of the
invariants: it turns out that <I> involves only the first seven.

As V has units of [FORCE/LENGTH] and must vanish with h, and as TrR and TrB
have units of [l/LENGTHJ, V can be written in the form

V = EhiJ(r, hR, hB), (2.12)

where the material constant Emay be called Young's modulus. Also, V must not change
if the unit normal n to S is replaced by - n and its deformed image ii is replaced by
- ii. That is, V must not change if R and B are simultaneously replaced by - Rand
- B. Thus v must be a function of the form

where

v = f[Trf, Trf2, h2(1, II, ... , XIII)], (2.13)

I = TrR, II = TrR2, III = TrRTrf . li, IV = Trf . R

V = Trf· liTrf' B, VI = TrRTrf· B, VII = TrBTrf· R (2.14)

VIII = Trf . B, IX = TrBTrr· B, X = TrRTrB

XI = TrR' B, XII = TrB, XIII = TrB 2. (2.15)

Now take "f, Pand b as norms defined by

"f a II f II = v'Trf2 , P= II R II, b = II B II.

With the aid of the Schwarz inequality for symmetric tensors,

we have

I ==0 2p2, II = p2, IIIII==oV2"fp2, IV==O"f2p2

f V I ==0 "f2bp

I VI, VII I ==0 V2"fbp, VIII ==0 "f2b2

IIX I ==0 V2"fb2 , I~ X, Xl I==0 bTJ

1
"2 XII, XIII ==0 b2

•

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.2l)

(2.22)
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A further restriction we place on f is that it be positive definite in the strains and
that as ('Y, j» - 0, (2.4) yield linear homogeneous stress-strain relations with no initial
stress terms. This is guaranteed if we assume the existence of positive constants A, B,
X, B such that - -

where ;Y is an 0(1) constant.
We now assume that f has a Taylor expansion in h2 of the form

f = <P + '" + 6,

where

<p = A + h2B

B = BII + B2II + B3III + B4IV

'" = h2 (BsV + ... + B13 XIII)

6 = h4 (C1e + C21 . II + ... + C9I XIII2 ),

and A, B., and C1 are functions of Trf and Trf2. Note that (2.23) implies that

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

We are going to take <p as our approximation to f. To exclude material instabilities
in bending, we further assume that

To see what restrictions this places on the functions B I , •.. , B4 , let

Am = min B, I, II, III, IV fixed, vp = I.

(2.30)

(2.31)

In the Appendix it is shown that necessary and sufficient conditions for Am to be pos­
itive, as (2.30) demands, are:

B2 > 0 (2.32)

2(B 1 + B2) + B3Trf + B4Trf2

> {(2Trf2 - T~f)(B3 + B4Trf)2 + [2B I + B3Trf + B4(T~f - Trf2)}) 1/2. (2.33)

We now obtain an upper bound on '" in terms of <p. To do so, we first note that (2.23)
requires that Bs, ... , B I3 satisfy inequalities of the form

IBs'Y I =s; Bs

IB; I =s; B;, i = 6, 7, 8

IB; I =s; B;'Y, i = 9, 10, 11
- 2 •IBd =s; B;'Y, I = 12, 13,

where the B;'s are positive constants. Let

(2.34)

(2.35)

(2.36)

(2.37)

(2.37)

Then with the aid of (2.19) to (2.22), (2.34) to (2.37), and Cauchy's inequality, we have
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(2.39)

(2.40)

(2.41)

(2.42)

- 1- 1- 2 2" 1-
h2

1 BsV I~ Bsh2'Ybp ~2Bshb('Y2 + h2p2) ~2Bsf.L(!!'Y +!ih p-) ~2BSf.Lhblp (2.38)

h2 1BsVI, B6 VII I~ V2(Bs,B6 )h2 'Ybp~~ (Bs,B6 )f.Lhblp

h2 1 BsVIII I ~ Bsh2'Y2b2 ~ Bsh2b2("(2 + h2p2) ~ BS f.Lh2b2 lp

h2
1 B91X I~ V2B9h2'Y2b2 ~ V2B9f.Lh2b2lp

2 - - 2 --h IBIOX, BIIXI I~ 2(B IO ,BII)h 'Ybp ~ (B IO ,BII)f.Lhblp

(2.43)

Equations (2.38) to (2.43) show that til = O(hblp).
To bound ein terms of lp, we assume that C I to Css are bounded while the coefficients

of XII2, XII . XIII, and XIII2 satisfy

(2.44)

where the CiS are constants. The dominant terms in eare those involving I and II only
and XII and XIII only. From (2.18), (2.22), and (2.44) we have

h4
1 CIF, C21· II, CI41P I~ 2«(\, C2,C\4)h4p4

--- 22222
~2(CI,C2,CI4)hP ('Y + h p)

- - - 2 2
~ 2(C.. C2 , CI4)f.Lh P lp (2.45)

41 2 21 - - - 4 2 4h CS9XII, C90XII· XIII, C91 XlIl ~ (CS9 ' C9\lo C91 )h 'Y b
- - - 4 4

~ (CS9 , C90 , C91)f.Lh b lp. (2.46)

Thus e = O[(hb, h2p2)lp).
In summary, we have shown that V = «1>[1 + O(hb, h2p2»), where

«I> = Eh{A + h2[BI(P~)2 + B2P;pe + B3'Y;pep~ + B4 ('Y&pe)2]}, (2.47)

and A, B.. ... , B4 are functions of 'Y~ and 'Y;'Y~ that must satisfy (2.29), (2.32) and
(2.33). As the curvature tensor of S does not appear in (2.47), «I> for a shell is the same
as for a plate of the same material.

A major simplification occurs if we assume that the Bis in (2.47) have Taylor ex­
pansions of the form

(2.48)

where B? and B] are constants. Then, to within the error made in replacing V by «1>,
we may replace (2.47) by

«I> = Eh{A + h2[(BY + Bh~)(p~)2 + (~ + Bh~)p~p~ + Bh&p~p~]). (2.49)

Definitions of the bending strains other than (2.2h are often convenient. One, sug­
gested by the work of the next section, is

(2.50)

As

(2.51)
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and

it follows that

where

JAMES G. SIMMONDS

(2.52)

(2.53)

(2.54)

Introducing the modified stress resultants and couples

n a13 = vara na13 + aa13 (p~ .... + b~ ....)m~"", m a13 = (ala)m a13 , (2.55).
we have

(2.56)

Hence,

(2.57)

The strain energy density V can again be approximated by a function of the form (2.47)
or (2.49), save that the Bs must be everywhere replaced by new Bs.

3. DESCENT FROM THREE DIMENSIONS

The intrinsic approach has shown that a sufficiently smooth two-dimensional strain
energy density for a materially isotropic shell depends, to a first approximation. on
five functions of the two extensional strain invariants. These functions must be either
determined experimentally, or else, as follows, wrung from an assumed three-dimen­
sional strain energy density W. By the results of the preceding section, we need look
only at plates. This observation simplifies things considerably.

Let the undeformed plate be materially isotropic. That is, assume that W = W(ll,
h, 13), where [7]

I. = 3 + 2E}, h = 3 + 4E} + 2(E}E}- E5ED, h = det('05 + 2E5) (3.1)

are the scalar invariants of 1 + 2E and

(3.2)

is the three-dimensional Lagrangian strain tensor. In (3.2), g; = iJxJiJcI are the covariant
base vectors of a referential coordinate system that locates the position x of a particle
in the undeformed body and j; = iJiJiJcI, where i is the position of the same particle
after deformation; r: .Ii = 'OJ.

Specializing to plate coordinates, we have

(3.3)
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As the notation suggests, a3 = t, S has been taken as the undeformed midplane, and
k is a fixed unit vector perpendicular to S. Thus

and the invariants in (3.1) take the expanded form

II = 2(1 + T) + I + 2E

h == J + 2(1 + T)(I + 2E) - 4£0Ea

h =J(I + 2E) + 8£i;Ea £li - 4(1 + 2T)E"Ea,

where

I
T= e, D =2(eE~ - EpE~), J = I + 2T+ 4D,

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

T and D being mnemonics for "trace" and " determinant."
In rubber-like bodies it is usually assumed that W = W(lI, h) and that 13 ==

(incompressibility). From (3.7), this last condition implies that

(3.9)

Let va da l dfil dt • dAd t denote the differential element of volume in the un­
deformed plate. Then the strain energy per unit area of S is given by

J
hl2

V = W(I"h)dt
-hl'2

(3.10)

where

(3.11)

To evaluate the integral we need the explicit zdependence of Ea~ and Ea. We adopt
the simplest kinematic model of displacement that permits significant normal strains,
negligible transverse shearing strains, and exact satisfaction of incompressibility,
namely

(3.12)

Then

(3.13)

where g is to be chosen presently. Substituting (3.4) and (3.13) into (3.2), we get

Ea~ ='Y..~ - gP..~ + ~(g'2Cal3 + g.ag.~)

1
Ea == 2'g.ag.3

(3.14)

(3.15)

(3.16)
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where, with the aid of (2.51),
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= (1 + 2'Y~)p~p~ - 2M'Y~p~

= G8~ +"Y~) lp~pl:' - (M)2] + lO + 2'Y~)p~ - 2"y~pl:']p~. (3.17)

The procedure for obtaining an approximate two-dimensional strain energy density
<I> is now clear. We substitute (3.14) and (3.15) into (3.5) and (3.6) and the resulting
expressions, along with (3.11h, into (3.10). As w is a known function of II and h, the
integrand becomes a known function of z. Integrating, we obtain an expression of the
form

- { h
2[[aw] [tfl l

] [a2w] [clIl]2 ] 4 }=Eh Wo + 24 all 0 dt2 0 + an 0 dt 0 +... + O(h) ,

where Wo = W(II' h) at t = 0, etc.
To determine g set

(3.18)

(3.19)

We impose incompressibility on our kinematic model by substituting (3.14) and (3.15),
with g given by (3.19), into (3.9). Equating coefficients of like powers of t, we obtain
an infinite sequence of algebraic equations. The solutions of the first two are

(3.20)

To obtain formulas for A and the Bs, let T = To + tTl + '" and J = Jo + VI +
.... It then follows from (2.50), (3.8), (3.14), and (3.19) that

To = 'Y~ = Trr, T. = -p~ = -TrR

T2 =~(C: + aa~ go.agO.~) - (gl/go)p~

(3.21,3.22)

Jo = a/a (3.24)

J 1 = - 2[(1 + 2'Y:)pB - 2'Y;p~l = - 2[(1 + 2Trr)TrR - 2Trr· Rl (3.25)

h = i - iI + O('Y2/L2), (3.26)

where, with reference to (2.14), i = (p~)2, etc. and L is "the wavelength of the de­
formation pattern" [3] defined here, somewhat arbitrarily, as

(3.27)

(L could be 0 or 00.) Substituting the expansions for T and J along with (3.9), (3.14),
and (3.15) into (3.5) and (3.6), we have
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I. = 2 + ala + 2Trr

- 2' {[ 1 - (ala)2 (l + 2Trr)] TrR + 2(ala):! Trr . An
+ ,2 {(ala)[4(ala)2 (l + 2Trr)2 - I - ala - Trni

+ (ala)(l + ala + Trr)ll

- 16(ala)3 (l + 2Trr)Ih + 16(ala)3 IV + O('Y2/L2)} + ... (3.28)

h = 'ii/a + 2(ala)(l + Trr)

- 2WI + ala + 2Trr - 2(ala)2(l + Trr)(l + 2Trr)lTrR

- 2[1 - 2(ala)2(l + Trr)] Trr· A} (3.29)
+ ,2 {[ 1 - (ala)2 (7 + II Trr) + 8(ala)3 (l + Trr)(l + 2Trr)2]i

+ [ - 1 + 3(al'ii)2 (l + Trf)]Il + 8(ala)2 [l - 4(ala)(l + Trr)(l + 2Trr)JIiI

+ 32(ala)3(l + Trf)1V + O('Y2/L2 )} + ...

Substituting (3.28) and (3.29) into (3.18) and comparing the resulting expression with
(2.47) (with Bs replaced by 8s), we obtain

A = Wo (3.30)

8, - I~ { [:;:]. (aI1i)[4(aI1i)' (I + 2TrO' - I - ara - Trf]

+ [:~]. [1 - (alii)' (7 + IITrO + 8(alii)' (I + TrO(1 + 2Trr)'l}

+ ~ { [~I'i]. [1 - (alii)' (I + 2TrOJ'

+ [~Il]. [1 + alii + 2Trr - 2(aI1i)' (I + Trr)(1 + 2TrOI'}

= I~ {[:~]. (2 - 3Trf) + [:~]. (2 + 9Trf)} + 0(>") (3.31)

8, = "2{[:~].(aI1i) (I + alii + TrO + [:~J.r-1 + 3(alii)' (I + TrOl}

= I~ {[:~]. (2 - STrO + [:~l (2 - 9TrO + } + W) (3.32)

8, = ~ { - 2 [:~J.(aI1i)'(I + 2TrO

+ [:~l (ala)2[1 - 4(ala)(l + Trr)(l + 2Trr)J

+ [~I~1(a!a)2 [l - (ala)2 (l + 2Trr)J
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[~w] }- ag 0[1 - 2(ala)2(1 + Trnl [I + ala + 2Trf - 2(ala)2(1 + TrnO + 2Trnl

4 [ilW] [ilW]= - - - - 2 - + O( 'Y)
3 aI, ° ah °

B, ~ if2 [::';1 (ara)' + 4 [:~l (ara)' (I + TrrJ

+ [~l~1(ala)' + [~l~1[I - 2(ara)' (I + TrrJl'}

= 0(1).

4. CYLINDRICAL BENDING OF PLATES

If a plate is bent into a right cylindrical shell, m= ~ = 0 and hence

Trf = 'Y = 'Yl, 'Y! = 'Y~ = 0

TrR = p = pI, p! = P~ = 0

i = II = p2, IiI = 'Yp2, IV = 'Y2p2.

It follows from (3.5) to (3.8) that

I + 4(£1)2
J == I. = h = 2(1 + £1) + --.;"...,:,:.....

1+2£1

1 [8'Y(I + 'Y) ,]
= 2(1 + 'Y) + I + 2'Y -, (I + 2'Y)2 P

[
4'2 ]+ ,2 P + 0('Y2/L2) + ...

(l + 2'Y)3

Substituting (4.2) into (3.18) and recalling that <I> = Ehcp, we find that

h
3
{[ [aw] [aw] ] Icp = w(Jo, Jo) + "3 ~ 0 + ah 0 (l + 2'Y)3

[ [a
2W] [a2w] ] 'Y

2
(1 + 'Y)2}'2 2 2 2+ 8 aH 0 + aH 0 (1 + 2'Y)4 P + O(h 'Y /L ).

For a Mooney material

w = C. (I. - 3) + C2 (h - 3)

== t(J - 3),

where C I and C2 are constants.
If we set

(3.34)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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(Le. if we introduce the ,physical bending strain K' which is just the curvature of the
deformed, cylindrical midsurface), then (4.3) reduces to

(4.6)

(AI)

This equation agrees with equation (l5c) of [5] provided that, in the latter, we set Kj.L

= AK' and then let K, the undeformed curvature, approach zero.
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APPENDIX

We may always choose a coordinate system on S such that, at any given point p, {aQ , n} is orthonormal
and 'Y12 = O. At p, all covariant components are physical components and we have (dropping overbars)

B = B I (PII + P22)2 + B2 (Pll + ph + 2ph)

+ B) (PII +P22) ('YII PII + 'Y22PZ2) + B4 ('YII PII + 'Y22P22)2

:; (B I + B2 + B3 'YII + B4 'YtrlPtl + 2(B 1 + jB3Trr + B4 'Y1I'Y22)PIIP22

+ (B. + B2 + B3 'Y22 + B4 'Yh)ph + 2B2P12

... A II Pll + 2A 12 PIIP22 + A22ph + 2B2 ph > 0, Vp" o.
The quadratic form B is positive definite if and only if

Upon noting that

I , 2
AIIA 22 = 4[(All + A22)- - (All - An) ).

we may replace the first two conditions by the single requirement that

which, when the Aijs are expressed in terms of the B;s and the strain components, becomes (2.33).

(A2)

(A3)

(A4)


